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Abstract We consider measures which are invariant under a measurable iterated function
system with positive, place-dependent probabilities in a separable metric space. We provide
an upper bound of the Hausdorff dimension of such a measure if it is ergodic. We also prove
that it is ergodic iff the related skew product is.

Keywords Ergodic measure · Hausdorff dimension · Contracting on average · Iterated
function system · Invariant measure

1 Introduction and Statement of a Result

In this note we give a contribution to the study of the multifractal properties of measures
which are invariant for iterated function systems. Recently this aspect of such measures
has been widely investigated, e.g. some results concerning their Hausdorff dimension were
obtained in [5–9] and [3]. For instance, in [9] and [6], the systems contracting on average and
having Dini-continuous, separated from zero probabilities were considered and the upper
bound of the Hausdorff dimension of the unique (in this case) invariant distribution was
given. A certain class of contracting on average systems with constant probabilities was dealt
with in [3]. (Note that ”contracting on average” has different meanings in [3] and in [6, 9].)
The system of that kind could have more than one probability invariant measure, however,
in [3] the upper estimation of the Hausdorff dimension of any of them was provided. It
seems that it was the first attempt to study iterated function systems without uniqueness
of invariant distributions in this respect. Another such attempt was made in [5], where the
exact dimension of ergodic invariant measures was calculated for a system which acts on
a compact interval, is non-overlapping and has continuous probabilities.
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Here we would like to continue the line of research which we described above. Assume
that (X,�) is a separable metric space and {X,Si,pi}, i ∈ I is a finite iterated function sys-
tem with positive probabilities and with ergodic invariant measure μ. Given N ∈ N, denote

hN(μ, δ) = −
∫

X

∑
i1...iN ∈IN

pi1...iN (x) inf
y∈BN (x,i1...iN ,δ)

logpi1...iN (y)μ(dx)

where BN(x, i1 . . . iN , δ) is the set of all points y ∈ X such that for all n ∈ [0,N ]
�(Sin ◦ . . . ◦ Si1(y), Sin ◦ . . . ◦ Si1(x)) < δ

holds. We will denote

hN(μ) = lim
δ↘0

hN(μ, δ)

and

h(μ) = lim
N→∞

1

N
hN(μ)

Similarly, let

λN(μ, δ) =
∫

X

∑
i1...iN ∈IN

pi1...iN (x)

× sup
y∈BN (x,i1...iN ,δ)

y �=x

log
�(SiN ◦ . . . ◦ Si1(x), SiN ◦ . . . ◦ Si1(y))

�(x, y)
μ(dx)

λN(μ) = lim
δ↘0

λN(μ, δ)

and

λ(μ) = lim
N→∞

1

N
λN(μ)

(and we accept −∞ as value of λ(μ)). As we will see, hN(μ, δ) and λN(μ, δ) are monotone
with respect to δ and subadditive with respect to N , hence for h(μ) and λ(μ) to exist it
is enough to check that h1(μ, δ) and λ1(μ, δ) exist for some δ > 0. Our main result is
as follows.

Theorem 1 Under the assumptions as above,

dimH (μ) ≤ −h(μ)

λ(μ)
, (1.1)

provided the right-hand side is well defined and nonnegative.

We would like to emphasize that the assumptions of the above theorem are weaker than
the ones that usually appear in the context of place-dependent iterated function systems.
Even the existence of invariant measures is not assured here—it must be guaranteed by
additional assumptions. However, it seems desirable to strengthen Theorem 1 so that the
field of its applicability would contain the systems with probabilities positive only on certain
parts of the space, recently considered by I. Werner (see e.g. [10]).
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Note that both h(μ) and λ(μ) are well known in the case of continuous maps Si and
continuous probabilities pi : h(μ) is the Kolmogorov-Sinai metric entropy of μ and λ(μ)

is the greatest Lyapunov exponent of the system (with respect to the measure μ). In such a
situation, the formula (1.1) is a generalization of the well known Hofbauer-Raith formula:
ratio of entropy to the Lyapunov exponent.

To satisfy the assumptions of the above theorem, the system must have λN(μ) negative
or equal −∞ for some N (for otherwise the denominator limit would be from [0+,∞] and
the whole formula would be negative). This property, crucial for the proof, could be seen as
a weak form of contractibility on average.

Let us present here an example of application of our result.

Example 2 Let S1(x) = x/3 and S2(x) = (x + 2)/3, both maps acting on X = [0,1]. Let
A ⊂ [0,1] be a set with (at most) countable boundary and let p ∈ (0,1/2). Set p1(x) = p

for x ∈ A and p1(x) = 1 − p otherwise. Set p2 = 1 − p1. This iterated function system has
at least one ergodic invariant measure and every its ergodic invariant measure μ satisfies

dimH (μ) ≤ −p logp + (1 − p) log(1 − p)

log 3
(1.2)

The paper is divided as follows. In the Sect. 2 we introduce the notation and give intro-
ductory information about iterated function systems and Markov operators. We finish the
section with discussion of Example 2. We also give there an important result on the relation-
ship between ergodicity of iterated function systems and ergodicity of the corresponding
skew product. This allows us to finish the proof of our main result, which we give in the
Sect. 3.

2 Preliminaries

Let (X,�) be a fixed nonempty separable metric space and let I be a finite set of cardinality
at least 2. The following notation will be used through this paper. The set of natural numbers
will not contain 0, i.e. N = {1, . . .}. To count elements of covers of X, which are needed to
estimate the Hausdorff dimension of a measure, we use the space � = IN. We endow it with
the product topology of I taken with the discrete metric. For a sequence ω ∈ �, the n-th term
of ω is denoted by ωn, whereas by ωn—the concatenation of the first n terms of ω (i.e. a finite
sequence (ω1, . . . ,ωn) ∈ I n). Such an ωn determines the cylinder Cωn = {ξ ∈ � : ξn = ωn}.
We denote by σ the left shift map acting on �, i.e. a map such that (σω)n = ωn+1. Finally,
|E| stands for the diameter of E ⊂ X, whereas B(x, r) denotes the closed ball in X with
center at x and radius r > 0.

Suppose we are given Borel measurable maps Si : X → X, i ∈ I, and Borel measurable
functions pi : X → [0,1], i ∈ I, such that

∑
I pi ≡ 1. Then we call the triple {X,Si,pi} a

(measurable) iterated function system. The functions pi are called probabilities.
Iterated function systems are usually studied by means of the corresponding Markov

chains. Generally, if we want to define a discrete-time Markov chain, we can start with
fixing a transition probability function (t.p.f.) P : X × B(X) → [0,1], i.e. a function such
that P (x, ·) is a probability measure for each x ∈ X and P (·,A) is a Borel measurable
function for each A ∈ B(X) (by B(Y ) we denote the family of all Borel subsets of a metric
space Y ). For example, for a given iterated function system {X,Si,pi}, let us consider the
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function

P : X × B(X) � (x,A) �→
∑

I

pi(x)1A(Si(x)).

Clearly it is a t.p.f.—we say that it corresponds to {X,Si,pi}.
Having given a t.p.f. P , we can look at it “dynamically”: to a fixed x ∈ X we assign

another point, choosing it randomly—according to the distribution P (x, ·). To better un-
derstand this action, it is convenient to think not about individual points, but about their
distributions. This leads to the definition of a Markov operator corresponding to P , acting
on the set M of all finite Borel measures on X via the formula

μP(A) =
∫

X

P (x,A)μ(dx) for A ∈ B(X),μ ∈ M.

This operator transforms the set M1 = {μ ∈ M : ‖μ‖ = 1} of distributions into itself (‖ · ‖
denotes here the total variation norm).

If the action defined above has no influence on a measure μ ∈ M, i.e. if μP = μ, then
μ is said to be invariant under P . If additionally μ ∈ M1 is an extremal point (in M) of
the set of distributions invariant under P then it is called ergodic. Later we use a convenient
characterization of ergodic measures in terms of invariant sets—we call a set A ∈ B(X)

μ-invariant provided P (·,A) = 1A μ-a.e., where μ is a given invariant measure.
Let us now come back to the situation when P corresponds to an iterated function system

{X,Si,pi}. Obviously μP = ∑
I Si∗(piμ), where T∗(f ν)(A) = ∫

f · 1A ◦ T dν for ν ∈ M,
f ∈ B, A ∈ B(X) and T : X → X is a Borel measurable map. (By B we denote the space
of all bounded Borel measurable functions on X.) We will say that a measure is ergodic or
a measure/a set is invariant under {X,Si,pi} if P has the appropriate property.

Now we assume that {X,Si,pi} is the iterated function system with an invariant measure
μ. We are going to construct a measure-preserving transformation which corresponds to the
initial system and has similar properties. For any x ∈ X,ωn ∈ I n, let

pωn(x) = pω1(x) · pω2(Sω1(x)) · . . . · pωn(Sωn−1(x))

and

Sωn = Sωn ◦ . . . ◦ Sω1

(we also put Sω0 ≡ Sω0 ≡ idX,pω0 ≡ 1, treating ω0 as an empty sequence). Moreover let px

be a family of probability measures on �, defined on cylinders in the following way

px(Cωn) = pωn(x) for ωn ∈ I n, x ∈ X.

Measures px can be, in turn, used to define the probability measure ν on X × � by the
formula

ν(d(x,ω)) = px(dω)μ(dx). (2.1)

This last measure, ν, is invariant under the skew product S acting on X × � as follows

S : (x,ω) �→ (Sω1(x), σω).

It is clear that the properties of the aforementioned invariant measures are related. Later we
show equivalence of their ergodicity—to do this we need some simple though useful facts.

Let us fix a t.p.f. P .
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Lemma 3 Assume that μ,μ1 ∈ M1 are invariant under P , μ1 � μ and the following con-
dition holds

μ(A) = 0 or μ(A) = 1 for any A ∈ B(X) μ-invariant under P . (2.2)

Then μ1 = μ.

Proof Suppose the lemma is false and set τ = μ−μ1 �= 0. The minimum property of the Jor-
dan decomposition τ = τ+ − τ− into nonnegative measures τ+, τ− implies that τ+ ≤ τ+P

and τ− ≤ τ−P . Hence and because P preserves the total variation norm, the measures
τ+, τ− are invariant under P . Moreover, according to the Hahn decomposition theorem,
there exist disjoint sets X+,X− ∈ B(X), X+ ∪ X− = X, on which the measures τ+, τ−
(respectively) are concentrated. Now put X0 = X+, Xm = {x ∈ Xm−1 : P 1Xm−1(x) = 1} for
m ∈ N and A = ⋂

m Xm. It is easy to see that 1A ≤ P (·,A)—therefore A is μ-invariant. Fur-
thermore, τ+(X) = τ(X+), τ−(X) = −τ(X−). As τ �= 0, both these numbers are positive
and so are μ(A),μ(X \ A)—the latter is true since μ1 � μ. This contradicts (2.2). �

Corollary 4 If μ ∈ M1 is invariant under P , then μ is ergodic iff the condition (2.2) holds.

Proof Sufficiency of (2.2) follows from Lemma 3 whereas necessity is implied by Lemma 1
from [2]. �

Assume now that {X,Si,pi} is an iterated function system with an invariant distribution
μ and the distribution ν is defined by (2.1).

Lemma 5 The measure μ is ergodic w.r.t. {Si,pi,X} iff the measure ν is ergodic for (X ×
�,S).

Proof By Corollary 4 it suffices to prove that μ satisfies (2.2) iff ν is ergodic. Sufficiency
is obvious, so we turn to necessity. Suppose ν is not ergodic, i.e. there exists a set D ∈
B(X × �) which is S-invariant and such that

ν(D) > 0, ν(Dc) > 0. (2.3)

For any x ∈ X,A ∈ B(X × �) let

Ax = {ω ∈ � : (x,ω) ∈ A}, LA(x) = px(Ax),

AX = {y ∈ X : LA(y) > 0}.
Clearly Ax ∈ B(�),AX ∈ B(X); the latter is true because LA ∈ B. Indeed, if we set L =
{E ∈ B(X × �) : LE ∈ B}, then L is a λ-system containing the π -system P of Borel mea-
surable rectangles, subsets of X × �. By the Sierpiński-Dynkin theorem on π -λ-systems,
L ⊃ σ(P) = B(X × �).

From the S-invariance of D it follows that
∑

I

pi(x)LD(Si(x)) = LD(x) for every x ∈ X, (2.4)

which, in turn, implies that P (·,DX) ≤ 1DX . Thus μ(DX) = 1; similarly μ((Dc)X) = 1.
Therefore there exists a set X̃ ∈ B(X) of full measure μ such that (Dc)x = (Dx)

c �= ∅ for
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every x ∈ X̃. Consequently, LD + LDc is μ-a.e. equal to 1. We are going to examine prop-
erties of LD more precisely.

Claim 1. LD is μ-a.e. constant.
Set Xl = L−1

D (l,∞), where l > 0 is such that μ(Xl) > 0. Consider the measure μ̃ define
by the formula: μ̃(E) = μ(E ∩ Xl) for E ∈ B(X). We are going to prove that μ̃ is invariant.
Since μ is so, μ̃P � μ. Furthermore, putting

g = dμ̃

dμ
− dμ̃P

dμ

we get (LD − l)g ≥ 0 μ-a.e. and
∫

g dμ = 0. Hence

∫
X

LDg dμ ≥ 0

with equality iff g μ-a.e. equal to 0. But

∫
X

LDg dμ =
∫

X

LD dμ̃ −
∫

X

LD dμ̃P = 0,

where the last equality is a consequence of (2.4). Thus μ̃ is an invariant measure absolutely
continuous w.r.t. μ. Lemma 3 gives μ = μ̃, which proves our claim.

To finish the proof of Lemma 5 it suffices to justify
Claim 2. The following disjunction holds

LD = 1 μ-a.e. or LDc = 1 μ-a.e. (2.5)

Assume the contrary and fix an ε > 0 so small that the sets {LD > 1 − ε} and {LDc >

1−ε} have both zero measure μ. Put 
(A,ωn) = {x ∈ X : px(Ax ∩Cωn) > (1−ε)px(Cωn)}
for any n ∈ N, ωn ∈ I n and A ⊂ X × �. We are going to show that

X̃ ⊂
⋃
Z∈F

Z, (2.6)

where F = {
(A,ωn) : n ∈ N,ωn ∈ I n,A ∈ {D,Dc}}.
Pick any x ∈ X̃ then. Two cases may occur: either px is nonatomic or it has at least

one atom. In the second case that atom, let us call it ω, may be a member of Dx (then we
conclude that x ∈ 
(D,ωn) for some n ∈ N) or it may happen that ω ∈ (Dc)x (in this case
there exists n ∈ N such that x ∈ 
(Dc,ωn)).

Now suppose x ∈ X̃ is such that px has no atoms. By means of the “Cantor function”-
type construction it is easy to build a measure-preserving homeomorphism between the
spaces (�,B(�),px) and ([0,1],B([0,1]), λ), which transforms cylinders into some inter-
vals. This and the Lebesgue theorem on density points applied to Dx imply the existence of
ωn ∈ I n such that x ∈ 
(D,ωn). The proof of (2.6) is finished.

To make use of (2.6) we notice that the family F ⊂ B(X) is countable and each member
of F has zero measure μ. It is so since, by the definition of px and S-invariance of sets
D, Dc,


(A,ωn) ⊂ S−1
ωn ({LA > 1 − ε}) for A ∈ {D,Dc}, n ∈ N,ωn ∈ I n.

But this implies the equality μ(X̃) = 0 which contradicts the way we chose the set X̃. �
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On account of Lemma 5, the Egorov theorem and the Birkhoff ergodic theorem, we have
an immediate corollary:

Corollary 6 Let μ be ergodic. Then for every ε > 0 and for any family of Borel measurable
functions {hi : X → R}I satisfying the inequalities

−∞ <

∫
X

∑
I

pihi dμ < 0

there exist K > 0,AK ∈ B(X × �) such that ν(AK) < ε and

n∑
j=1

hωj
(Sωj−1(x)) < K

for all (x,ω) ∈ AK
c and all n ∈ N.

Let us go back to Example 2. Let μ be any invariant measure for (X,Si,pi). As
μP n = μ, μ([k · 3−n, (k + 1) · 3−n)) ≤ (1 − p)n ↘ 0, μ cannot have atoms. It implies that
μ(Bδ(∂A)) ↘ 0 as δ ↘ 0.

The function integrated in the definition of hN(μ, δ) equals −N
∑2

i=1 pi(x) logpi(x)

× μ(dx) for all x whose all trajectories avoid Bδ(∂A) for time N and is bounded by
−N logp everywhere. Hence, by Lebesgue majorized convergence theorem

1

N
hN(μ) = −

∫
X

2∑
i=1

pi(x) logpi(x)μ(dx) = −p logp − (1 − p) log(1 − p)

At the same time, λN(μ, δ) = −N log 3 for all N and δ and (1.2) follows.
The one thing remaining to check is that (X,Si,pi) from Example 2 has any invariant

measures at all. Let μ0 be any probabilistic measure on X and define

μn = 1

n

n−1∑
m=0

μ0P
m

As μn form a sequence of probabilistic measures on a compact space, they have a sub-
sequence μnk

convergent in law to some measure μ. Let us fix ε > 0. As μ0P
n([k · 3−m,

(k + 1) · 3−m)) ≤ (1 − p)m for all n > m, the same is true for μ. It follows that μ cannot
have atoms, hence μ(Br(∂A)) ≤ 3

13 ε for r small enough. As μnk
converges to μ,

μnk
(Br(∂A) ≤ 3

13
ε (2.7)

and

∑
Di

∣∣μnk
(Di) − μ(Di)

∣∣ ≤ 3

13
ε (2.8)

for k big enough (where the sum is taken over the components of the complement of
Br(∂A)). We will prove that μP = μ.
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Let dFM be the Fortet-Mourier metric [4] on the space of finite measures, defined as

dFM(μ, ν) = sup

∣∣∣∣
∫

X

f dμ −
∫

X

f dν

∣∣∣∣
where the supremum is taken over Lipschitz functions with Lipschitz constant 1 and with
absolute value bounded by 1. It is well known that the topology defined by Fortet-Mourier
metric is equivalent to the usual weak* topology, see [1].

As μnk
converge to μ, we have

dFM(μnk
,μ) ≤ 3

13
ε (2.9)

for k big enough.
By the definition of μnk

we have

dFM(μnk
,μnk

P ) = 1

nk

dFM(μ0,μ0P
nk ) ≤ 1

nk

≤ 3

13
ε (2.10)

for k big enough.
We can write

dFM(μnk
P,μP ) ≤ dFM

(
(χBr (∂A)μnk

)P, (χBr (∂A)μ)P
) +

∑
Di

dFM

(
(χDi

μnk
)P, (χDi

μ)P
)

As the Fortet-Mourier distance of two measures cannot be greater than the sum of their
L1-norms, by (2.7)

max(μnk
(Br(∂A)),μ(Br(∂A))) ≤ 3

13
ε

To estimate the following sum note that on each Di the iterated function system acts as
two linear contracting maps with contraction coefficients 1/3, one chosen with fixed prob-
ability p and the other (1 − p). Hence, the Fortet-Mourier distance of images of two mea-
sures is bounded from above by 1/3 of the Fortet-Mourier distance of the original measures
plus the difference of L1-norms of the original measures. Summing over Di and applying
(2.8) we get

∑
Di

dFM((χDi
μnk

)P, (χDi
μ)P ) ≤ 1

3
dFM(μnk

,μ) +
∑
Di

|μnk
(Di) − μ(Di)| ≤ 4

13
ε

Hence,

dFM(μnk
P,μP ) ≤ 7

13
ε

Applying (2.9) and (2.10) we get

dFM(μ,μP ) ≤ ε

As ε was arbitrary, μ = μP .
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3 The Proof of Theorem 1

First we would like to clear up some simple case. Namely, notice that w.l.o.g. we may
assume that X do not contain any isolated points. Indeed, every isolated point is either of
zero measure μ and therefore can be removed from the space (without changing dimH (μ))
or has it positive. In the second case μ is concentrated on a finite set and consequently
dimH (μ) = 0.

Lemma 7 If hN(μ, δ) and λN(μ, δ) exist, they are subadditive in N .

Proof Both hN(μ, δ) and λN(μ, δ) can be written in the form

∫
X

∑
ωN ∈IN

pωN (x) sup
y∈BN (x,ωN ,δ)

φ(x, y,ωN)μ(dx),

where

φ(x, y,ωN) =
N∑

n=1

φ(Sωn−1(x), Sωn−1(y),ωn)

is some real-valued function. Given N1 and N2, for any fixed δ we have y ∈
BN1+N2(x,ωN1+N2 , δ) if and only if y ∈ BN1(x,ωN1 , δ) and

SωN1 (y) ∈ BN1(SωN1 (x),ωN1+1 . . .ωN1+N2 , δ).

Hence,

sup
y∈BN1+N2 (x,ωN1+N2 ,δ)

φ(x, y,ωN1+N2)

≤ sup
y∈BN1 (x,ωN1 ,δ)

φ(x, y,ωN1)

+ sup
y∈BN2 (S

ωN1 (x),ωN1+1...ωN1+N2 ,δ)

φ(SωN1 (x), y,ωN1+1 . . .ωN1+N2)

As μ = μP N1 , hN1+N2(μ, δ) ≤ hN1(μ, δ) + hN2(μ, δ) for every δ > 0 (and analogously for
λN1+N2(μ, δ)). �

Now let us present the idea of the proof of Theorem 1. We need to prove that dimH (μ) ≤
hN(μ, δ)/λN(μ, δ). We will only give the detailed proof for N = 1, for higher N one works
with P N instead of P and the proof is almost identical.

We are going to analyze a family of measures {μj,ωn}, which sum up to μ and are as-
sociated with a certain finite partition {Ej } of X. Every measure μj,ωn is concentrated on
B(Sωn(ej ), |Sωn(Ej )|) (where ej ∈ Ej )—typically a set of small diameter. We will choose
some of the pairs (j,ωn) in such a way that the union of sets B(Sωn(ej ), |Sωn(Ej )|) corre-
sponding to the chosen pairs will be both of big measure μ and geometrically small (see
Lemma 8). We will use these balls to estimate the Hausdorff dimension of μ.

We need some additional notations: for i ∈ I, x ∈ X,ϑ < 0, δ > 0,m ∈ N,ω ∈ � we will
write
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L
δ,ϑ
i (x) = max

{
sup

y∈B(x,δ)
y �=x

log
�(Si(x), Si(y))

�(x, y)
,ϑ

}

Hδ
i (x) = inf

y∈B(x,δ)
logpi(y),

Lδ,ϑ
m (x,ω) = 1

m

m−1∑
k=0

Lδ,ϑ
ωk+1

(Sωk (x)),

H δ
m(x,ω) = 1

m

m−1∑
k=0

Hδ
ωk+1

(Sωk (x)),

I
δ,ϑ
L =

∫
X

∑
I

piL
δ,ϑ
i dμ,

I δ
H =

∫
X

∑
I

piH
δ
i dμ,

s(δ,ϑ) = I δ
H /I

δ,ϑ
L .

Note that inequality (1.1) holds if I δ
H = −∞ for each δ > 0. So, since I δ

H is a nonin-
creasing function of δ, w.l.o.g. we can assume that there is � ∈ (0,1) such that for every
δ ∈ (0,�) the integral I δ

H is finite and, at the same time, the corresponding integral from the
denominator of the right-hand side of (1.1) is negative (see comments in the first section) or
equal to −∞. In the latter case there exists a number � < 0 such that I

�,ϑ
L ∈ (−∞,0) for

all ϑ ∈ (−∞,�]. In the former one we set � = −∞—that constant would play no role in
the proof then.

Obviously s (considered on (0,�) × [−∞,�]) is a nondecreasing function of every
variable with another one fixed. Moreover, the limit of s, taken as (δ,ϑ) → (0,−∞), is
equal to the right-hand side of (1.1).

After making these introductory remarks we can start the proof. First we choose (δ,ϑ)

from the domain of s. Next we fix s > s(δ,ϑ) and ι ∈ N in an arbitrary way. We also pick
ε ∈ (0,1/ι) such that s > s(δ,ϑ)(1 + ε)/(1 − ε) and then we apply Corollary 6 for ε and
{Lδ,ϑ

i }I —we are allowed since I
δ,ϑ
L ∈ (−∞,0). As a result we obtain K,AK .

Let {Ej }J be a finite family of nonempty disjoint Borel subsets of X, of diameter at most
δe−K/4 and such that

μ

(⋃
J

Ej

)
> 1 − ε,

where J ⊂ N. We add to this family E0 = X \⋃
J Ej to form a partition of X. Then we pick

n ∈ N big enough (n > n0) to apply Lemma 8 (see below) and such that

�J (δe−K)s exp
{
n(s(1 − ε)I

δ,ϑ
L − (1 + ε)I δ

H )
}

< 2−ι. (3.1)

Before we formulate this Lemma, we notice that

μ =
∑

{J∪{0}}×Im

μj,ωm,
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where

μj,ωm = Sωm∗(pωmμ|Ej
)

and m ∈ N ∪ {0}. If, for any (j,ωm) ∈ {J ∪ {0}} × Im, i ∈ I , we put

pi(j,ω
m) = 1

‖μj,ωm‖
∫

X

pi dμj,ωm

then

‖μj,ωmi‖ = pi(j,ω
m)‖μj,ωm‖;

moreover pi(j,ω
m) > 0, as it is an average of pi under some measure.

Lemma 8 There exists n0 ∈ N such that for every n > n0 from the set {J ∪ {0}} × I n one
can choose a subset Z(ι) satisfying the following conditions:

i) for (j,ωn) ∈ Z(ι) and m ≤ n, |Sωm(Ej )| ≤ δ,

ii) |Sωn(Ej )| ≤ δe−K+n(1−ε)I
δ,ϑ
L /2 for (j,ωn) ∈ Z(ι),

iii) Z(ι) has at most �J e−n(1+ε)I δ
H elements,

iv) μ(
⋃

Z(ι) B(Sωn(ej ), |Sωn(Ej ))) ≥ 1 − 4ε provided ej ∈ Ej for all j ∈ J .

Proof Fix points ej ∈ Ej . Since μ is invariant, we get

μ

⎛
⎝⋃

Z(ι)

B
(
Sωn(ej ),

∣∣Sωn(Ej )
∣∣)

⎞
⎠ ≥ 1 −

∑
Z(ι)c

∥∥μj,ωn

∥∥ , (3.2)

regardless of n and Z(ι) ⊂ {J ∪ {0}} × I n. Hence, we only need to estimate the sum of
‖μj,ωn‖ over pairs (j,ωn) for which i), ii) or iii) does not hold.

First we are going to establish how big n0 should be. Lemma 5 and the Birkhoff theorem
show that Lδ,ϑ

m (x,ω) converges to I
δ,ϑ
L and Hδ

m(x,ω) converges to I δ
H for μ-almost every

x ∈ X and px -almost every ω ∈ �. By the Egorov theorem we can choose a big (w.r.t. μ)
subset X0 ∈ B(X) for which those convergences are uniform for a big set of ω’s. Specifying,
we have n0 ∈ N,X0 ∈ B(X) such that

μ(X0) ≥ 1 − ε (3.3)

and for every x ∈ X0, the set of ω which does not satisfy

|Lδ,ϑ
n (x,ω) − I

δ,ϑ
L | + |Hδ

n (x,ω) − I δ
H | ≤ −ε max{I δ,ϑ

L , I δ
H } (3.4)

for some n > n0, has px -measure not greater than ε.
Now we are going to construct Z(ι). We fix n > n0. Notice that Z(ι) cannot contain any

element of the form (0,ωn). Let us denote the set of all such pairs by A1. We obtain
∑
A1

‖μj,ωn‖ = μ(E0) < ε. (3.5)

Next, we want to exclude from Z(ι) the set A2 of all the pairs (j,ωn) ∈ Ac
1 for which i)

does not hold. So we take (j,ωn) ∈ A2, i.e. such that

|Sωm(Ej )| > δ
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for some m ≤ n, but

|Sωu(Ej )| ≤ δ

for all u < m. We have

δ < sup
y∈Ej

�(Sωm(x), Sωm(y))

for some x ∈ Ej . Furthermore

sup
y∈Ej

�(Sωm(x), Sωm(y)) ≤ |Ej |
m−1∏
u=0

sup
y∈S−1

ωu (Sωu {x})c∩Ej

�(Sωu+1(x), Sωu+1(y))

�(Sωu(x), Sωu(y))

≤ |Ej | exp(mLδ,ϑ
m (x,ω)),

where ω is any continuation of the finite sequence ωn. Thus Ej × Cωn ⊂ AK , and so

∑
A2

‖μj,ωn‖ < ε. (3.6)

The last set to exclude is the one containing the elements for which we cannot make use
of the choice of n0. We distinguish the set A3 of pairs (j,ωn) with j such that Ej does not
intersect X0; here, by (3.3), we have

∑
A3

‖μj,ωn‖ ≤ ε. (3.7)

Next, for every (j,ωn) ∈ Ac
3 let us choose a point xj ∈ Ej ∩ X0. Denote by A4 the set of

pairs (j,ωn) ∈ Ac
3 such that (3.4) does not hold for (x,ω) ∈ {xj } × Cωn and n. Again,

∑
A4

‖μj,ωn‖ ≤ ε. (3.8)

Let Z(ι) = ⋂4
t=1 Ac

t . Since i) and (3.4) hold for (j,ωn) ∈ Z(ι), we obtain

n−1∏
k=0

pωk+1(j ;ωk) ≥
n−1∏
k=0

inf
y∈B(S

ωk (xj ),|S
ωk (Ej )|)

pωk+1(y) ≥ en(1+ε)I δ
H (3.9)

and

∣∣Sωn(Ej )
∣∣ ≤ 2|Ej |

n−1∏
k=0

sup
y∈B(S

ωk (xj ),|S
ωk (Ej )|)

y �=S
ωk (xj )

�(Sωk+1(xj ), Sωk+1(y))

�(Sωk (xj ), y)

which implies that
∣∣Sωn(Ej )

∣∣ ≤ δe−K+n(1−ε)I
δ,ϑ
L /2. (3.10)

By (3.10), ii) is satisfied. Similarly, as
∑

ωn

∏n−1
k=0 pωk+1(j ;ωk) = 1 for every j ∈ J , (3.9)

implies iii). The assertion iv) follows from (3.5), (3.6), (3.7), (3.8) and (3.2). We are done. �
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The rest of the proof is standard. Let ej ∈ Ej be any points. The set

Yι =
⋃
Z(ι)

B
(
Sωn(ej ),

∣∣Sωn(Ej )
∣∣)

has measure μ at least 1 − 4ε. At the same time it can be covered with a family

{
B

(
Sωn(ej ), |Sωn(Ej )|

)}
(j,ωn)∈Z(ι)

(3.11)

of at most �J e−n(1+ε)I δ
H sets of diameter less than δe−K+n(1−ε)I

δ,ϑ
L .

The set

Y =
⋂

ι

⋃
κ>ι

Yκ

has full measure μ. At the same time Y has zero s-dimensional Hausdorff measure, because
Y ⊂ ⋃

κ>ι Yκ for every ι, the diameter of covers (3.11) converges to 0 as ι → ∞ and (3.1)
yields the inequality

∑
κ>ι

∑
(j,ωn)∈Z(κ)

∣∣B(
Sωn(ej ),

∣∣Sωn(Ej )
∣∣)∣∣s < 2−ι.

Since s > s(δ,ϑ) was arbitrary, the Hausdorff dimension of μ is not greater than s(δ,ϑ).
As −ϑ > 0 can be chosen arbitrarily big, we get the assertion.
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